Effect of ion flux on helium retention in helium-irradiated tungsten
نویسندگان
چکیده
Helium retention in irradiated tungsten leads to swelling, pore formation, sample exfoliation and embrittlement with deleterious consequences in many applications. In particular, the use of tungsten in future nuclear fusion plants is proposed due to its good refractory properties. However, serious concerns about tungsten survivability stems from the fact that it must withstand severe irradiation conditions. In magnetic fusion as well as in inertial fusion (particularly with direct drive targets), tungsten components will be exposed to low and high energy ion irradiation (helium), respectively. A common feature is that the most detrimental situations will take place in pulsed mode, i.e., high flux irradiation. There is increasing evidence of a correlation between a high helium flux and an enhancement of detrimental effects on tungsten. Nevertheless, the nature of these effects is not well understood due to the subtleties imposed by the exact temperature profile evolution, ion energy, pulse duration, existence of impurities and simultaneous irradiation with other species. Object Kinetic Monte Carlo is the technique of choice to simulate the evolution of radiation-induced damage inside solids in large temporal and space scales. We have used the recently developed code MMonCa (Modular Monte Carlo simulator), presented at COSIRES 2012 for the first time, to study He retention (and in general defect evolution) in tungsten samples irradiated with high intensity helium pulses. The code simulates the interactions among a large variety of defects and during the irradiation stage and the subsequent annealing steps. The results show that the pulsed mode leads to significantly higher He retention at temperatures higher than 700 K. In this paper we discuss the process of He retention in terms of trap evolution. In addition, we discuss the implications of these findings for inertial fusion.
منابع مشابه
Damage studies on irradiated tungsten by helium and argon ions in a plasma focus device
Damage of tungsten due to helium and argon ions of a PF device was studied. Tungsten samples were irradiated by 20 shots of the plasma focus device with argon and helium as working gases, separately. The tungsten surface was analyzed by SEM, before and after irradiation. SEM revealed dense blisters with diameters of a few hundred nanometers, on the samples which were irradiated by helium ions, ...
متن کاملAdvanced Evaluation of Radiation Effects on Fusion Materials
59 IMR KINKEN Research Highlights 2012 IMR KINKEN Research Highlights 2012 A new framework of bidirectional collaborative research program has been started in 2010 for the study of nuclear fusion reactor materials. By utilizing the environment of the research center at each university, joint research is conducted interactively between the centers and the National Institute of Fusion Science (NI...
متن کاملEffect of Carbon Impurity on Molybdenum Nanostructure evolution under Helium Ion Irradiation in Extreme Conditions
The performance of plasma facing components (PFC) is of great important for the realization of prototype nuclear fusion. Tungsten has been considered as the leading high-Z PFC material for these reactors and tokamaks due to its superior thermophysical properties, high melting point, low sputtering yield, and low tritium inventory. However, its surface deteriorates significantly under helium ion...
متن کاملDeuterium retention and desorption behavior of reduced activated ferritic steel with surface damage due to high energy helium ion irradiation
Reduced activation ferritic-martensitic steel F82H was irradiated with 5 keV helium ions to introduce the surface damage. After the irradiation, the irradiated F82H was continuously exposed to 1.7 keV deuterium ions. The effects of the damages introduced by the helium ion irradiation on deuterium retention and desorption behavior of F82H were investigated. The HD desorption had a peak at around...
متن کاملNanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation
We report the formation of wave-like structures and nanostructured fuzzes in the polycrystalline tungsten (W) irradiated with high-flux and low-energy helium (He) ions. From conductive atomic force microscope measurements, we have simultaneously obtained the surface topography and current emission images of the irradiated W materials. Our measurements show that He-enriched and nanostructured st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015